SAI KAMPES

SAI KAMPESSAI KAMPESSAI KAMPES

SAI KAMPES

SAI KAMPESSAI KAMPESSAI KAMPES
  • Home
  • Computer Science Courses
    • Computer Science
    • CS Sem Courses
    • AI for beginers
    • Inner Working BERT GPT
    • Deep Learning with CNN
    • DS and Cloud Comp
    • ML for Beginers
    • CV and Image Proc
    • Adv AI
    • Genreal Programming
    • TransformersLLM
    • Parallel Programming
    • Adv ML
  • Mechanical Courses
    • Mechanical
    • Semester Courses
    • FEM For Beginers
    • Advanced FEM
    • CFD
  • Advanced Mathematics
    • Advanced Mathematics
    • Engineering Mathematics
    • Maths for AIML
    • Linear Algebra

Transformers / LLM

  

Fundamentals 

  • What is a Transformer?
    • Origins (Attention is All You Need paper)
    • Encoder vs Decoder vs Encoder-Decoder
  • Attention Mechanism
    • Self-attention
    • Scaled Dot-Product Attention
    • Multi-head attention
  • Positional Encoding
    • Why it’s needed
    • Sinusoidal vs Learned embeddings
  • Architecture of Transformers
    • Layer normalization, residuals, FFN
    • Stacking layers and blocks
  • Pretraining vs Fine-tuning
    • Pretraining on large corpora
    • Fine-tuning on specific tasks (e.g., QA, summarization)

Intermediate Topics 

  • Transformers in NLP
    • BERT (bi-directional encoder)
    • GPT (auto-regressive decoder)
    • RoBERTa, DistilBERT, T5, etc.
  • Tokenization
    • Byte-Pair Encoding (BPE)
    • WordPiece
    • SentencePiece
  • Transfer Learning with LLMs
    • Zero-shot, one-shot, and few-shot learning
    • Prompt engineering basics
  • LLM Applications
    • Chatbots
    • Text generation
    • Summarization, translation
    • Code generation

Advanced Topics

  • Fine-tuning vs Prompt-tuning vs LoRA
    • Parameter-efficient tuning
    • Adapters, prefix-tuning
  • Retrieval-Augmented Generation (RAG)
    • Combining LLMs with external knowledge
  • In-Context Learning
    • How LLMs learn from the prompt
    • Chain-of-thought prompting
  • Training LLMs
    • Datasets (Common Crawl, C4)
    • Training infrastructure and scaling laws
  • LLM Internals
    • Layer attention patterns
    • Memorization and hallucination
    • Token probabilities
  • Ethics and Safety in LLMs
    • Bias, fairness, misinformation
    • Alignment and RLHF (Reinforcement Learning from Human Feedback)
  • Evaluation      Metrics
    • Perplexity
    • BLEU, ROUGE, F1 for generation
    • Human evals

Bonus/Applied Topics

  • Using Hugging Face Transformers
    • Pipelines, tokenizers, models
    • Fine-tuning with Trainer API
  • Deploying LLMs
    • Quantization, pruning
    • On-device and cloud deployment
  • Open-source LLMs
    • LLaMA, Mistral, Falcon, etc.
  • Future Directions
    • Multimodal Transformers (e.g., CLIP, Flamingo, Gemini)
    • Agents (AutoGPT, BabyAGI)
    • LLMs with memory or tools

Copyright © 2025 Sai KAMPES - All Rights Reserved.

  • Computer Science
  • Mechanical

This website uses cookies.

We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.

Accept