SAI KAMPES

SAI KAMPESSAI KAMPESSAI KAMPES

SAI KAMPES

SAI KAMPESSAI KAMPESSAI KAMPES
  • Home
  • Computer Science Courses
    • Computer Science
    • CS Sem Courses
    • AI for beginers
    • Inner Working BERT GPT
    • Deep Learning with CNN
    • DS and Cloud Comp
    • ML for Beginers
    • CV and Image Proc
    • Adv AI
    • Genreal Programming
    • TransformersLLM
    • Parallel Programming
    • Adv ML
  • Mechanical Courses
    • Mechanical
    • Semester Courses
    • FEM For Beginers
    • Advanced FEM
    • CFD
  • Advanced Mathematics
    • Advanced Mathematics
    • Engineering Mathematics
    • Maths for AIML
    • Linear Algebra

Machine learning for beginers

  

Introduction to Machine Learning 

o What is Machine Learning? 

o Types of Machine Learning (Supervised, Unsupervised, Reinforcement) 

o Applications of Machine Learning 

o Basics of AI and Data Science 


Python for Machine Learning

o Setting up Python Environment (Jupyter Notebook, Google Colab) 

o Introduction to NumPy & Pandas (Data Handling) 

o Matplotlib & Seaborn (Data Visualization) 

o Scikit-learn Basics 


Data Preprocessing & Feature Engineering

o Handling Missing Data 

o Encoding Categorical Variables 

o Feature Scaling (Normalization & Standardization) 

o Feature Selection Techniques 


Supervised Learning Algorithms 

o Linear Regression 

o Logistic Regression 

o Decision Trees 

o Random Forest 

o Support Vector Machines (SVM) 

o k-Nearest Neighbors (KNN) 


Model Evaluation & Optimization

o Train-Test Split & Cross-Validation 

o Metrics (Accuracy, Precision, Recall, F1 Score, ROC-AUC) 

o Hyperparameter Tuning (GridSearchCV, RandomizedSearchCV) 


Unsupervised Learning Algorithms

o Clustering (K-Means, Hierarchical Clustering, DBSCAN) 

o Dimensionality Reduction (PCA, t-SNE) 


Neural Networks & Deep Learning (Intro)

o Basics of Artificial Neural Networks (ANN) 

o Introduction to TensorFlow & Keras 

o Building a Simple Neural Network 

o Training, Validation, and Overfitting 


Natural Language Processing (NLP)

o Tokenization & Text Preprocessing 

o Sentiment Analysis 

o Word Embeddings (Word2Vec, GloVe) 


Practical Applications & Projects 

o House Price Prediction (Regression) 

o Spam Email Classification (Classification) 

o Customer Segmentation (Clustering) 

o Handwritten Digit Recognition (Deep Learning)

Copyright © 2025 Sai KAMPES - All Rights Reserved.

  • Computer Science
  • Mechanical

This website uses cookies.

We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.

Accept